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Abstract
We present molecular dynamics simulations of the structural relaxation of a
simple bead–spring model for polymer blends. The introduction of a different
monomer size induces a large timescale separation for the dynamics of the
two components. Simulation results for a large set of observables probing
density correlations, Rouse modes, and orientations of bond and chain end-
to-end vectors are analysed within the framework of the mode coupling theory
(MCT). An unusually large value of the exponent parameter is obtained. This
feature suggests the possibility of an underlying higher-order MCT scenario for
dynamic arrest.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Polymer blends are soft-matter systems which exhibit ‘dynamic asymmetry’, meaning
that, starting from two homopolymers with different mobilities, two separated segmental
dynamics can still be observed in the blend. Phenomenological approaches usually consider
thermally driven concentration fluctuations [1] and self-concentration effects induced by chain
connectivity [2] as key ingredients for structural relaxation in polymer blends [3]. A recent
approach combines self-concentration effects with ideas of the Adam–Gibbs theory [4]. For
most of the investigated systems, dynamics of the two components in the blend display
qualitatively similar features. However, recent experimental results from nuclear magnetic
resonance (NMR) [5, 6], dielectric spectroscopy [7–11], or neutron scattering [12, 13] suggest
that a rather different scenario arises when the two homopolymers exhibit very different
glass transition temperatures. Hence, for dilute concentrations of the fast component, the
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two components in the blend exhibit strong dynamic immiscibility. A large separation in
their relaxation times is observed, which can even be of 12 orders of magnitude in blends
of poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) for an extreme dilution of
PEO [6]. In such conditions the motion of the chains of the fast component takes place in a
slowly relaxing matrix formed by the slow component, providing a connection with the problem
of confinement in host media with interconnected voids.

We have recently performed an investigation on the structural relaxation dynamics of a
simple bead–spring model for polymer blends [14]. The introduction of monomer size disparity
between the two components induces a large timescale separation for low concentrations
of the fast component, which displays unusual relaxation features. Hence, density–density
correlators exhibit logarithmic decays over time intervals of even four decades and a concave-
to-convex crossover by varying the thermodynamic state point (i.e. the control parameters) or
the wavevector [14]. Dynamic features observed for this simplified model are supported by
recent fully atomistic simulations for the PEO/PMMA blend [12].

We have discussed the unusual features reported in [14] within the framework of the mode
coupling theory (MCT) of the glass transition [15, 16], and suggested an underlying higher-
order MCT transition as the origin of the observed anomalous relaxation scenario. Higher-
order MCT transitions were initially predicted by schematic models [17], and later derived
for simplified models of short-range attractive colloids [18, 19]. These systems show two
different mechanisms for dynamic arrest: steric repulsion characteristic of colloidal systems,
and formation of reversible bonds, induced by the short-range attraction. Coexistence of both
mechanisms of very different localization lengths [18, 19] yields a higher-order MCT transition
in a certain region of the temperature–density plane. The mentioned anomalous relaxation
features are derived from the MCT equations as specific solutions associated with the higher-
order point [18–21].

Results for the mean squared displacements and density–density correlators in the bead–
spring polymer blend of [14] display striking similarities with qualitative features associated
with higher-order MCT transitions. Similar results have also been observed in later simulations
of binary mixtures of non-bonded particles with large size disparity, both for soft [22, 23]
and ultrasoft interactions [24]. Finally, very recent two-dimensional NMR experiments on
a polymer–plasticizer system have revealed logarithmic relaxation for a strongly confined
plasticizer [25]. Hence, this collection of similar experimental and simulation results
suggest a common relaxation scenario for multicomponent systems exhibiting strong dynamic
asymmetry. Moreover, the mentioned analogies with short-range attractive colloids suggest
that the higher-order MCT scenario might be a general feature of systems showing several
mechanisms for dynamic arrest. For the mentioned polymeric and non-polymeric mixtures, we
have suggested bulk-like caging and confinement [14, 22, 23]. These mechanisms would be
respectively induced by the presence of neighbouring small particles and by the slow matrix
formed by the large particles.

It is worth mentioning that solutions of the MCT equations for a fluid of hard spheres
confined in a disordered matrix of strictly static obstacles explicitly reveal the existence of a
higher-order transition [26]. As discussed in [26], the strictly static nature of the matrix induces
differences from the former mixtures, where the matrix shows a slow relaxation. Hence, though
they share common features for the dynamics of the confined component, a comparison of
results between both kind of mixtures must be made with care.

The test of MCT predictions for the bead–spring blend model reported in [14] was
restricted to density–density correlators. In this paper we present a systematic test for a large
set of correlators probing different dynamic features as Rouse modes or orientations of bond
and chain end-to-end vectors. Consistent with MCT predictions, a common set of dynamic
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exponents provides a good description of dynamic correlators in the early-middle stage of
the structural α-relaxation. Consistent with previous results [14], the unusually large value
obtained for the exponent parameter suggests that the observed anomalous relaxation features
might be associated with an underlying higher-order MCT scenario.

This paper is organized as follows. In section 2 we summarize the main details of the
simulated model. In section 3 we present simulation results for static correlations. The
main predictions of MCT are exposed in section 4. We discuss within the framework of
MCT relaxation features of the slow and fast component in, respectively, sections 5 and 6.
Conclusions are given in section 7.

2. Model and simulation details

The model introduces a binary mixture of bead–spring chains (of the species A and B). Each
chain consists of N = 10 monomers of mass m = 1. All the monomers in the same chain
belong to the same species (i.e. all them are A-like or B-like). Two given monomers (placed in
the same chain or different ones) interact through a soft-sphere potential plus a quadratic term,
Vαβ(r) = 4ε[(σαβ/r)12 − C0 + C2(r/σαβ )2], where ε = 1 and α, β ∈ {A, B}. The interaction
is zero beyond a cutoff distance rc = cσαβ , with c = 1.15. Continuity of potential and forces
at r = rc is guaranteed by setting the values C0 = 7c−12 and C2 = 6c−14. The radii of the
different pair interactions are σBB = 1, σAA = 1.6σBB, and σAB = 1.3σBB. Chain connectivity
is introduced by a FENE bonding potential [27], V FENE

αα (r) = −k R2
0ε ln[1 − (R0σαα)−2r 2],

between consecutive monomers, with k = 15 and R0 = 1.5. The superposition of Vαβ(r)

and V FENE
αα (r) provides an effective bonding potential for connected monomers with a sharp

minimum at r = 0.985σαβ , which makes bond crossing impossible.
The blend composition is defined as xB = NB/(NA + NB), where Nα is the number

of α-chains. All the data presented here correspond to a fixed composition xB = 0.3 (we
have simulated a mixture of NA = 210 and NB = 90 chains). We use a packing fraction
φ = (π/6)L−3[NAσ 3

AA + NBσ 3
BB] = 0.53, with L the side of the cubic simulation cell.

The value φ = 0.53 is comparable to those used in simulations of slow relaxation in simple
liquids [28, 29]. In the following, temperature T , distance, wavevector q , and time t will be
given, respectively, in units of ε/kB, σBB, σ−1

BB , and σBB(m/ε)1/2.
The system is prepared by placing the chains randomly in the simulation cell, with a

constraint that avoids overlapping of monomer cores. The Newtonian equations of motion
are integrated in the velocity Verlet scheme [30], with a time step ranging from 2 × 10−4 to
5×10−3 for, respectively, the highest and the lowest investigated T . Standard periodic boundary
conditions are used for calculation of monomer–monomer distances entering in the interactions.
Computational expense for the latter calculation is reduced by implementing a standard link-
cell method [30]. The system is thermalized at the selected temperature by periodic velocity
rescaling. Then the equilibrium run for data acquisition is performed in the microcanonical
ensemble (constant energy). During this run no drift in thermodynamic quantities is observed
nor ageing effects in dynamic correlators computed for different time origins. Statistical
averages at a given state point are typically performed over 20–40 independent runs.

3. Static properties

In this section we provide information about static correlations in the bead–spring blend. We
compute normalized partial static structure factors Sαβ(q) = 〈ρα(q, 0)ρ∗

β(q, 0)〉/(N
√

Nα Nβ).
The quantity ρα(q, t) is the density fluctuation for wavevector q and is defined as ρα(q, t) =∑

j exp[iq · rα
j (t)], the sum extending over all the particles of the species α ∈ {A,B}. Figure 1
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Figure 1. Partial static structure factors, SAA(q), SBB(q) and SAB(q), at T = 0.4. Also included
are the chain form factors, Schain

AA (q), Schain
BB (q), as well as the corresponding Debye functions,

SDebye
AA (q), SDebye

BB (q). Arrows indicate the wavevectors q = 2π/Rα
e,g, where Rα

e and Rα
g are,

respectively, the chain end-to-end distance and gyration radius of the species α.

shows, for a low temperature T = 0.4, results for A–A, B–B, and A–B pairs. Intrachain static
structure factors (i.e. chain form factors), Schain

αα (q), are also displayed. The latter quantities are
computed by restricting the product ρα(q, 0)ρ∗

α(q, 0) = ∑
j,k exp{iq · [rα

j (0) − rα
k (0)]} over

pairs of monomers j, k belonging to the same chain. A sharp maximum is observed in SAA(q)

at q = 4.5, which corresponds to a typical distance of 1.4 between A-monomers. Results for
SAA(q) are qualitatively similar to those reported for the homopolymer case in a similar bead–
spring model [29, 31]. A weak low-q structure is observed in the present case, which originates
from the presence of ‘holes’ in the matrix of A-monomers. These holes are created by the
inclusion of the B-monomers. The negative values of SAB(q) observed at small wavevectors
are a signature of anticorrelation effects between A- and B-monomers at large distances, and
indicate a moderate degree of demixing. This feature is illustrated in figure 2, which shows a
typical configuration of the B-chains. The latter are not homogeneously distributed but form a
sort of cluster structure.

The partial static structure factor for B–B pairs, SBB(q), exhibits a rather different q-
dependence (figure 1). From a comparison with the form factor for B-chains, Schain

BB (q), it is
clear that SBB(q) is largely dominated by intrachain contributions, as expected for high dilution
of the B-chains in the matrix formed by the A-chains. The peak at q = 7.2 corresponds to a
typical distance of 0.87 between B-monomers.

Data for the chain form factors in figure 1 are also compared with the Debye
function [32, 33], SDebye

αα (q) = 2Nq−4(Rα
g )−4{exp[−q2(Rα

g )2] + q2(Rα
g )2 − 1}, which is

obtained by assuming a Gaussian distribution of monomer–monomer distances within the
chain [32, 33]. As previously observed for the homopolymer case [31], Gaussian statistics
approximately work at low q but clearly break down for wavevectors probing distances smaller
than the chain gyration radius Rα

g . The magnitude of the deviations of simulation data from
the Debye function is similar to observations for the homopolymer case [31]. Hence, chain
statistics is not significantly affected by blending.

4. Main predictions of MCT

In this section we summarize some of the main predictions of the MCT for the glass transition.
Extensive reviews can be found, for example in [15, 16, 34–36]. In its ideal version, MCT
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Figure 2. A typical configuration of the B-chains.

predicts a sharp transition from an ergodic liquid to a non-ergodic glassy state for a given
value of the relevant control parameter ξ (in the following the temperature, T , though results
given below are valid for any ξ ). On approaching the transition point T = Tc, MCT
establishes a set of quantitative predictions for any correlator coupled to density fluctuations,

(t). An example is normalized density–density correlators of wavevector q , Fαα(q, t) =
〈ρα(q, t)ρ∗

α(q, 0)〉/Sαα(q), for the species α. At the critical temperature T = Tc the long-
time limit of 
(t) jumps from zero to a non-zero value, denoted as the critical non-ergodicity
parameter, 
c. In the standard case (type-B transitions) the jump in 
(t) is discontinuous,
i.e. 
c takes a finite positive value.

For ergodic states close to the transition point 
 usually exhibits a first decay to
a plateau, whose time extension increases as the transition is approached. This plateau
regime corresponds to the temporary trapping of each particle within the cage formed by its
neighbouring ones, i.e. the well-known caging effect which is generally present in supercooled
liquids or jammed systems, for example. At times longer than the so-called first MCT timescale
tσ , the correlator 
 starts a second decay from the plateau to zero. This second decay is
commonly known as the α-process and represents the full decorrelation of the system from its
initial configuration, i.e. the structural relaxation. According to MCT, the initial part of the
α-process (denoted as the von Schweidler regime) is given by a power-law decay ∝ −tb, with
0 � b � 1. A power-law series expansion extends the description of the α-decay to longer
times:


(t) = 
c − h
(t/τα)b + h(2)

 (t/τα)2b + O(t3b). (1)

The prefactors h
 and h(2)

 are state point-independent and are different for each correlator


. On the contrary, the von Schweidler exponent b is common to all correlators. The
characteristic timescale of the α-relaxation, τα, is the second MCT timescale. It is also unique
for all correlators, and diverges at the transition point as ∝ (T − Tc)

−γ (see below). The α-
decay can often be described by an empirical Kohlrausch–Williams–Watt (KWW) function,
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∝ exp[−(t/τ)β
], with a 
-dependent stretching exponent 0 < β
 < 1. An interesting
prediction of MCT [37] is that βq = b and τ ∝ q−1/b in the limit of large q , both for density–
density [F(q, t)], and self-correlators, F s

α(q, t) = 〈∑ j exp{iq · [rα, j (t) − rα, j (0)]}〉/(N Nα).
This result [23, 28, 29, 31, 38–41] provides a consistency test for data analysis.

Another prediction of MCT for state points close to the transition point is the power-law
dependence of the diffusivity and the relaxation time τ


x :

τ

x , D−1 ∝ (T − Tc)

−γ . (2)

The relaxation time τ

x of the correlator 
 is defined as the time where 
(t) decays to some

small value x , provided it is well below the plateau. The time–temperature superposition
principle of the MCT establishes that, for t much longer than the first timescale tσ , 
(t/τα) =

̃, where 
̃ is a 
-dependent scaling function. According to this prediction, for a fixed x the
ratio τ


x /τα is temperature-independent for any τ

x � tσ , i.e. τ


x ∝ τα. In other words, τ

x will

be 
-modulated but will follow the same power-law behaviour in T as the α-relaxation time
τα (even if τ


x � τα). Note that, in the MCT terminology, τα is a single timescale, though its
value can be approximately probed by evaluating dynamic correlators 
 for which τ


x ∼ τα.
This is the case of, for example, the density–density correlator F(q, t) for wavevector q at the
maximum of the static structure factor S(q), since the former probes decorrelation over typical
distances between nearest-neighbour particles. The relaxation time of F(q, t) is indeed often
denoted as the ‘α-relaxation time’, though in the context of MCT the latter strictly corresponds
to τα .

The exponent γ in equation (2) is given by the relation

γ = 1

2a
+ 1

2b
, (3)

with 0 � a � 0.395. Hence γ � 1.766. The critical exponents a, b, and γ are unequivocally
related to the so-called exponent parameter λ through

λ = �2(1 + b)

�(1 + 2b)
= �2(1 − a)

�(1 − 2a)
, (4)

where � is the Gamma function. The exponent parameter λ is unequivocally determined by
the static correlations (i.e. by the total and partial static structure factors) at the transition point
T = Tc. For type-B transitions it takes values 1/2 � λ � 1.

When numerical solutions of the MCT equations are not available the non-ergodicity
parameters, prefactors and exponents in equations (1)–(4)—which are system-dependent
quantities controlled by static correlations—are empirically obtained as fit parameters from
simulation or experimental data. Consistency of the data analysis requires that the set of
exponents so obtained fulfils both equations (3) and (4).

5. Dynamics of the slow component in the blend

Figure 3 shows results for the mean squared displacement averaged over all the monomers,
〈�r 2

α(t)〉, for both A- and B-chains. The introduction of monomer size disparity, σAA/σBB =
1.6, induces a large timescale separation between the two components, for low concentration
of the B-chains, by decreasing temperature. Now we analyse relaxation features for the slow
A-component. Results for the fast B-component are analysed in the next section.

Figures 4–8 show, for the A-chains, a consistent test, i.e. with a common set of exponents,
of MCT predictions for several dynamic correlators, diffusivities, and relaxation times. Figure 4
shows, for several wavevectors, results at T = 0.4 for the intrachain coherent correlator
Fchain

AA (q, t). The latter is computed as 〈∑ j,k exp{iq · [rα, j (t) − rα,k(0)]}〉/[N Nα Schain
αα (q)],
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Figure 3. Mean squared displacement at different temperatures for both components. Filled and
empty symbols correspond, respectively, to A- and B-chains.

Figure 4. Symbols: for different wavevectors, intrachain coherent correlator for A–A pairs,
Fchain

AA (q, t), at T = 0.4. Lines are fits to equation (1) with an exponent b = 0.30.

for any species α. In this equation the sum only includes j, k pairs belonging to the same α-
chain. Figure 5 shows normalized correlators of the Rouse modes φA

pp(t) at T = 0.5. The latter
are defined as 
α

pp(t) = 〈Xα
p(t) · Xα

p(0)〉/〈[Xα
p(0)]2〉, where the Rouse normal modes [32, 33]

of index p = 0, 1, . . . N − 1 are given by Xp(t) = N−1
∑N

j=1 r j (t) cos[ j pπ/N]. Figure 6(a)
displays, at T = 0.45, angular correlators C (b)A

n (t) for the bond vector, b(t), between
consecutive monomers. Such correlators are defined as C (b)A

n (t) = Pn[cos θ(t)], where
Pn is the Legendre polynomial of order n, and cos θ(t) = 〈b(t) · b(0)〉/〈b2(0)〉. Angular
correlators C (e)A

n (t) for the chain end-to-end vector, e(t), are defined in an analogous way, with
cos θ(t) = 〈e(t) · e(0)〉/〈e2(0)〉. Data for C (e)A

n (t) at T = 0.5 are given in figure 6(b).
Lines in figures 4–6 are fits of the α-decay of the mentioned correlators to a power-law

series expansion like equation (1) with a common von Schweidler exponent b = 0.30. Only
terms up to second order (t2b) are included in the fit procedure (in the following, references to
this equation will be understood as being limited to second order). It must be stressed that the
validity of equation (1) for the early-middle α-decay must not be assessed by the length of the
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Figure 5. Symbols: for different values of p, correlators of the Rouse pth modes, φA
pp(t), of the

A-chains. Lines are fits to equation (1) with an exponent b = 0.30. The temperature is T = 0.5.

Figure 6. (a) Symbols correspond, for different values of n, to angular correlators C (b)A
n (t) of

the bond vector of the A-chains. Lines are fits to equation (1) with an exponent b = 0.30. The
temperature is T = 0.45. (b) As (a) for angular correlators C (e)A

n (t) of the end-to-end vector. The
temperature is T = 0.5.

vertical interval of 
(t) that it is able to cover. Indeed, if the relaxation time of the analysed
correlator is much longer than the α-time τα , the vertical interval described by (1) will be rather
small, as we will discuss below. The prefactors h
 and h(2)


 in (1), which yield the amplitude
of the decay, are generally in anti-phase with 
c [34, 36, 38, 42] and are small for large values
of the latter. Hence, for correlators with high plateaux, equation (1) will only describe a small
vertical interval of the decay. On the contrary, validity of (1) is given by the extension of
the time window (i.e. horizontal interval) that it is able to describe. In the present case a good
description of the simulation data is obtained over three time decades for the lowest investigated
temperature, a time window of validity which is typically achieved in simulations. It must be
noted that such a time window corresponds to a specific dynamic regime, the early-middle
stage of the structural α-relaxation. However, relaxation of a given correlator to a small value
(e.g. x = 0.2) can occur at a very different timescale τ


x . This is the case of, for example, low-
index correlators of Rouse modes or chain end-to-end vectors. The latter show a decay much
slower than density–density correlators FAA(q, t) at the maximum of SAA(q) (q = 4.5), which
properly probe the timescale τα of the structural α-relaxation for the A-chains. For FAA(q, t)
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Figure 7. (a) The q-dependence of the stretching exponent of different correlators for the A-
monomers (see text for notations) at temperature T = 0.4. The dashed line indicates the large-q
limit β(q) = b = 0.30. (b) As (a) for the corresponding KWW times (see text). The dashed line
corresponds to the power law ∝ q−1/b, with b = 0.30.

Figure 8. Symbols: inverse diffusivity (circles) and relaxation times of different correlators for the
A-monomers (see text for notation). The wavevector for τ0.2, τ chain

0.2 , and τ s
0.2 is q = 4.6. The dashed

lines are (from top to bottom) fits of D−1
CM, τR5

0.4, τ s
0.2, and τ b5

0.3 to the MCT power law ∝ (T − Tc)
−γ ,

with Tc = 0.37 and γ = 4.0.

we find τ0.2 = 1.7 × 104 at T = 0.5, while relaxation times at the same temperature for low
indexes of 
A

pp(t) and C (e)A
n (t) are clearly much longer (see figures 5 and 6(b)). Having said

this, MCT establishes that asymptotic expansions such as (1) will be observed for any dynamic
correlator in the specific early-middle time window of the α-relaxation, the process investigated
here.

Figure 7 shows a test of the MCT predictions β(q → ∞) = b and τ (q → ∞) ∝ q−1/b.
The stretching exponents β , βcha, and βs, correspond, respectively, to the density–density,
intrachain coherent and self-correlators of the A-monomers at T = 0.4, and are obtained
as fits of the decay from the plateau to a KWW function. The corresponding KWW times
are respectively denoted as τ , τ cha, and τ s. The mentioned large-q predictions for stretching
exponents and KWW times are fulfilled with b = 0.30, i.e. with the same value of the von
Schweidler exponent used in the fits of the dynamic correlators presented in figures 4–6.

The exponent b = 0.30 provides, through equations (3) and (4), the values λ = 0.90,
a = 0.21, and γ = 4.0. Now we test the validity of equation (2) with this latter value of

9
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γ . Figure 8 shows the temperature dependence of the relaxation times τ

x of several dynamic

correlators 
 for the A-monomers. As mentioned above, these times are defined as those where
the corresponding correlator decays to a value x . Notations τ0.2, τ chain

0.2 , τ s
0.2, τ b5

0.3, τ e8
0.3, τR8

0.3 ,
and τR5

0.4 correspond, respectively, to the correlators FAA(q, t), Fchain
AA (q, t), F s

A(q, t), C (b)A
5 (t),

C (e)A
8 (t), φA

88(t), and φA
55(t). The wavevector for the first three correlators is q = 4.6, an

intermediate value between the main maxima of SAA(q) and Schain
AA (q) (see figure 1). The

selected values of x are well below the plateau height of the correlator (see figures 4–6). Also
displayed is the inverse diffusivity, D−1

CM, of the center-of-mass of the A-chains, which is defined
as the long-time limit of the ratio 6t/〈[�rCM

A (t)]2〉, where 〈[�rCM
A (t)]2〉 is the corresponding

mean squared displacement.
Dashed lines in figure 8 represent fits to the power law (2) by forcing a common critical

temperature Tc for all the data sets, with a fixed exponent γ = 4.0, i.e. the value independently
determined from the analysis previously presented in figures 4–7. A value Tc = 0.37 provides
the best global fit with the mentioned constraint. Interestingly, this value is much lower than
the one obtained for the homopolymer state [14] at the same investigated packing fraction
φ = 0.53, Tc = 0.52. The latter value is obviously identical for the limits xB = 0 and 1, since
the energy scale ε of the model is the same for all the pair interactions, which only differ by
the length scale σαβ (see section 2). Hence, blending at a fixed packing fraction stabilizes the
ergodic phase as compared to the homopolymer state, in analogy with the behaviour observed
for colloidal binary mixtures of similar size disparity [42–44].

A good description of all the data sets is obtained over more than two decades of relaxation
time and inverse diffusivity. As expected, due to the asymptotic character of equation (2),
deviations from power-law behaviour occur at high temperature. Such deviations are also
present below some ill-defined temperature very close to Tc. This feature is often observed
if one investigates dynamics at sufficiently low temperatures [45–47] and is usually related
with the presence of activated hopping events, which are not accounted for within the ideal
version of the MCT.

The analysis of simulation data of the slow A-component that has been presented in
figures 4–8 consists of a series of independent tests of several predictions of MCT with a
common set of values of the critical exponents. Therefore it provides a robust determination
of such values, and in particular of the exponent parameter λ = 0.90 from which the rest of
the exponents are derived through equations (3) and (4). This value of λ is unusually large,
as compared to those typical of one-component systems, as monodisperse hard spheres [36]
(λ = 0.74), simplified models of ortho-terphenyl [39] (λ = 0.76), silica [48] (λ = 0.71),
water [49] (λ = 0.78), or bead–spring homopolymers [50] (λ = 0.72). In the following
subsection we discuss the consequences of the large value of λ obtained here.

6. Dynamics of the fast component in the blend

Now we analyse the dynamics of the fast B-component. Figure 9(a) shows simulation
results for the intrachain coherent correlator, Fchain

BB (q, t), at temperature T = 0.4. As
previously reported in [14] for the total density–density correlator FBB(q, t), a concave-to-
convex crossover is observed by varying the wavevector. For intermediate values of the latter,
a purely logarithmic decay occurs over more than three time decades. Following a procedure
analogous to that of [14], we have analysed the decay of Fchain

BB (q, t) in terms of a logarithmic
expansion,

Fchain
BB (q, t) = f c

q − Hq ln(t/τσ ) + H (2)
q ln2(t/τσ ) + O[ln3(t/τσ )], (5)
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Figure 9. (a) Symbols correspond, for different wavevectors, to intrachain coherent correlators for
B–B pairs, Fchain

BB (q, t), at T = 0.4. Lines are fits to the logarithmic expansion (5). (b) As (a) for

the angular correlators C (b)B
n (t) of the bond vector of the B-chains.

with τσ ∼ tσ , instead of the von Schweidler series (1) used for the A-monomers (we will
discuss this point below). Within the framework of MCT, logarithmic expansions of dynamic
correlators are associated with the presence of a nearby higher-order transition [17–19]. The
latter is characterized by a value of the exponent parameter λ = 1, though analogous predictions
are expected for sufficiently large values λ → 1− as the one obtained here, λ = 0.90 (see
section 5). Equation (5) provides a good description of the decay of correlators displayed in
figure 9(a). Analogous fits are shown in figure 9(b) for the orientational correlators C (b)B

n (t) of
the bond vector, evaluated for different values of n. In this case the validity of the logarithmic
expansion is observed, at the same temperature, over a shorter time interval. Figure 10
shows the values of the coefficients f c

q , Hq , and H (2)
q obtained from the corresponding fits

of Fchain
BB (q, t) at two different temperatures (T = 0.4 and 0.5). The term f c

q is the critical
non-ergodicity parameter, which is associated with the transition point. Therefore its values
at different wavevectors must not depend on the state point at which they are obtained as fit
parameters. This is confirmed by the numerical values displayed in figure 10(a). According to
MCT, the prefactor Hq is factorized as the product of two terms. One of them only depends on
the state point and the other one on the wavevector [19]. Therefore the values of Hq evaluated
at different state points must obey scaling behaviour. This feature is also confirmed by data in
figure 10(b). Also in agreement with MCT expectations [19], the obtained values of the second
prefactor H (2)

q are smaller than Hq and incompatible with scaling behaviour (see figure 10(c)).
Results presented in figures 9 and 10 support the similar analysis performed in [14] for

density–density correlations of the B-monomers, FBB(q, t). It must be stressed that the choice
of equation (5) for describing relaxation of correlators for B-monomers is not, in principle, in
contradiction with the description of the same correlators for the A-monomers in terms of the
power-law series (1). Both equations are series expansions whose convergence depends on the
analysed region of the control parameter space. For the case of higher-order transitions (λ = 1),
or more generally for transitions with λ → 1−, there are q-dependent paths in the control
parameter space where the series (5) is rapidly convergent. In particular, for each wavevector
there are optimal paths where H (2)

q = 0. Along these paths the corresponding correlator will
exhibit a purely logarithmic decay [19]. Moreover, by properly tuning the control parameters
or the wavevector, it is possible to change the sign of H (2)

q and, as a consequence, inducing a
concave-to-convex crossover in the shape of the decay [19], as observed in figure 9. Since from
the analysis of dynamic correlators for the A-monomers we have determined a value λ = 0.90,
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Figure 10. Symbols in (a), (b), and (c) correspond, respectively, to the values of the critical non-
ergodicity parameter, f c

q , and the prefactors Hq and H (2)
q in equation (5), for the intrachain coherent

correlator for B–B pairs, Fchain
BB (q, t). Temperatures are T = 0.4 (circles) and T = 0.5 (squares).

it might be expected that such correlators will exhibit such features at some state point. Indeed,
they are observed at higher temperatures, as shown in figure 11 for Fchain

AA (q, t) at T = 1.0.
The decay exhibits a clear concave-to-convex crossover by tuning the wavevector. Logarithmic
relaxation covers two time decades for q ≈ 5.2.

The fact that features associated with nearby higher-order MCT transitions are observed
for the A- and the B-components at very different temperatures must be commented on. As
mentioned above, the optimal paths in the control parameter space for the observation of
logarithmic relaxation are different for each correlator [19]. The location of these paths is
controlled by static correlations [19], which in the present case are very different for the A- and
the B-monomers (see figure 1). This difference might explain why anomalous relaxation for
both types of monomer is observed at very different temperatures. Unless one moves close
to the optimal path in the control parameter space—which usually involves a simultaneous
variation of several control parameters [17, 19]—logarithmic relaxation vanishes by decreasing
temperature, and a standard two-step decay is recovered (see [21] for an illustrative example).
This seems to be the case of correlators for the A-monomers, which at low temperature are well
described by the von Schweidler power-law series (1). A similar result has also been observed
for mixtures of large and small non-bonded particles [23]. Still, a satisfactory answer to this
point can only be obtained by solving the MCT equations for this system.

Figure 12 displays, for the B-chains at T = 0.4, results for the density self-correlators,
F s

B(q, t). A reliable fit (over more than one time decade) of the corresponding decays to
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Figure 11. Symbols: for different wavevectors, intrachain coherent correlator for A–A pairs,
Fchain

AA (q, t), at T = 1.0. The straight line indicates logarithmic behaviour over two time decades.

Figure 12. Comparison, at T = 0.4, between the intrachain coherent (Fchain
BB (q, t), symbols) and

self-correlators (Fs
B(q, t), dashed lines) for the B-monomers. The wavevectors for the latter are,

from top to bottom, the same ones as for the former (see legend).

equation (1)—with any common exponent b for all wavevectors—or (5) was not possible.
Similar tests were also unsuccessful for correlators probing reorientations of chain end-to-end
vectors, C (e)B

n (t), and relaxation of Rouse modes, 
B
pp(t), of the B-chains. The reason for the

apparent failure for the B-chains, or at least the limited range of validity, of the former equations
for these correlators remains to be understood. It might be that this feature is connected
to a non-universal character of the asymptotic expansions (1), (5) for binary mixtures with
very different timescales for their respective density fluctuations, and that despite this non-
universality, MCT can still reproduce the behaviour of the mentioned correlators for the B-
chains. It might also be related to the presence of hopping events intervening in self-motions
of the B-monomers (see below). As we argue in the following, there are results in the literature
that support these possibilities.

Numerical solutions of the MCT equations have recently been presented for sodium silicate
melts and compared with simulation results [51]. In these systems the fast sodium atoms and
the slow silica matrix exhibit a strong timescale separation similar to that observed here for the
A- and B-chains [51, 52]. Though an analysis of density–density correlators for the different
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Figure 13. Left side: cubic boxes represent the NB N subcells (of size ≈σ 3
BB) in the simulation box

which have been visited more times by the B-monomers during a simulation time of t = 5 × 104,
for T = 0.5. Right side: initial (dark spheres) and final (light spheres) configuration of the B-
monomers for the latter simulation interval. The same orientation of the simulation cell is used in
both figures.

atomic species, as well as of self-correlators for silicon and oxygen, have provided a consistent
test of MCT predictions with a common set of dynamic exponents [52], self-correlators F s(q, t)
of the sodium atoms do not show [52], as in the present case, a reliable time interval for apparent
validity of equations (1) or (5). Still, the corresponding numerical solutions of MCT equations
reported in [51] do reproduce the qualitative behaviour of F s(q, t) for the sodium atoms. In
particular, MCT accounts for the unusual timescale separation between self- and collective-
density correlators which is observed for the sodium atoms. This feature is assigned [52–56]
to preferential diffusion along a long-living structure of channels induced by the much slower
relaxation of the silica matrix, which leads, for the alkali ions, to a fast decay of self-correlations
as compared to collective correlations.

Figure 12 shows a comparison between self-correlators and intrachain coherent correlators
for the B-chains at T = 0.4. Both correlators only converge to each other in the limit of large-
q . Since, due to the low concentration of the B-component, intrachain coherent correlators
for the B-chains exhibit only small differences (not shown) with density–density correlators
for all the B–B pairs, the large timescale separation between F s

B(q, t) and Fcha
BB (q, t) presented

in figure 12 is a feature analogous to that noted above for alkali ions in silica matrices [52].
Indeed, following a procedure similar to that presented in [53] for the sodium atoms, we have
determined a similar structure of channels for preferential motion of the B-chains. We have
divided the simulation box in cubic subcells of size ≈σ 3

BB and computed, for a trajectory of
the system, the number of times each subcell is visited by a B-monomer. Figure 13 displays,
at T = 0.5, the NB N (a number equal to that of B-monomers) most visited subcells for a
simulation time t = 5 × 104. The latter is much longer than the time for structural relaxation
of the B-monomers at that temperature. As shown in figure 13, the mentioned subcells are not
randomly distributed but form connected clusters, in analogy with results reported in [53] for
sodium in silica matrices.

In figure 13 we also display the initial and final configuration of the B-monomers for the
mentioned simulation interval t = 5×104 used for the computation of the most visited subcells.
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Figure 14. Symbols: inverse diffusivity (circles) and relaxation times of different correlators for the
B-monomers (see text for notation). The wavevector for τ0.2, τ chain

0.13 , and τ s
0.03 is q = 4.6. The thick

and thin solid lines are fits of, respectively, τ0.2 and τ chain
0.13 to a MCT power law ∝ (T − Tc)

−γ , with
Tc = 0.37 and γ = 4.0. The arrow indicates the inverse value of Tc. The dashed lines are (from top
to bottom) fits of D−1

CM, τ e1
0.2, τ b1

0.2, and τ s
0.03 to Arrhenius behaviour, ∝ exp(E/T ). The activation

energies are, respectively, E = 3.4, 4.1, 3.8, and 5.9.

As expected (t is much longer than the structural relaxation time for B-monomers) both
configurations are fully decorrelated. Therefore the mentioned channel structure is not a trivial
consequence of the static correlations for the B–B pairs, which also form a cluster structure
(figure 2). It is instead induced by the timescale separation of the dynamic correlations, which
are much slower for the confining matrix formed by the A-chains. The channel structure will
only vanish when any region of the simulation cell can be visited by the B-monomers with the
same probability. This can only occur at much longer times probing full structural relaxation
of the A-component. A detailed static and dynamic characterization of this channel structure is
beyond the scope of this paper and will be presented elsewhere.

Finally, it must be mentioned that the observed decoupling between intrachain collective
and self-correlators is exhibited only by the B-chains in the blend. For the A-chains in the
blend, as well as for the homopolymers, we have observed only small differences for the
latter correlators. Decoupling between self- and collective intrachain dynamics is indeed a
rather unusual feature, at odds with expectations from the standard Rouse model [32, 33]. This
observation in the simple bead–spring blend investigated here is supported by recent neutron
scattering experiments on PEO/PMMA at a low PEO concentration [57]. Whether numerical
solutions of MCT equations are also able, in analogy with the case of alkali ions in silica, to
give account for this feature is an open question.

Figure 14 shows the temperature dependence of the relaxation times for several dynamic
correlators probing relaxation of the B-component. Notations τ0.2, τ chain

0.13 , τ s
0.03, τ b1

0.2, τ e1
0.2,

and τR1
0.2 correspond, respectively, to the correlators FBB(q, t), Fchain

BB (q, t), F s
B(q, t), C (b)B

1 (t),
C (e)B

1 (t), and φB
11(t). The wavevector for the first three correlators is q = 4.6. Also included

is the inverse diffusivity of the center-of-mass for the B-chains. The set of data shown
in figure 14 exhibits a behaviour rather different from similar quantities for the A-chains
displayed in figure 8. Only relaxation times for collective density correlations, FBB(q, t)
and Fchain

BB (q, t), show qualitative agreement with the MCT power law ∝ (T − 0.37)−4.0

derived from data of the A-monomers. As expected, deviations occur at temperatures very
close to Tc. The rest of the quantities displayed in figure 14 are incompatible with power-
law behaviour. They show instead an apparent Arrhenius dependence, ∝ exp(E/T ), from
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moderate to the lowest investigated temperatures. This feature is demonstrated in figure 14 by
the linear behaviour observed by representing data on a logarithmic scale versus (linear) 1/T .
The obtained activation energies E vary between 3.4 for the center-of-mass diffusivity and 5.9
for the relaxation time of density self-correlations. The observed Arrhenius behaviour suggests
that strong hopping events intervene in the structural relaxation of the B-chains, similar to
observations for alkaline ions in silica [58]. These events seem to affect more strongly the
self- than the collective density correlations, for which a power-law behaviour can be observed
over two decades in relaxation time for temperatures above Tc. It remains to be understood
whether such hopping events—which are not included in the ideal version of MCT—are related
to the mentioned reduction of the range of validity of equations (1) or (5) for the corresponding
correlators. It is worth mentioning that the latter possibility might be the case for sodium atoms
in silica. Numerical solutions of the MCT equations reported in [51], though reproducing the
observed qualitative behaviour, underestimate the strength of the decay exhibited in simulations
for self-correlators F s(q, t) of sodium. Hence, the presence of hopping events presumably
accelerates relaxation as compared to theoretical predictions.

Finally, it is worth remarking that the observed Arrhenius-like temperature dependence
for τ b1

0.2 and τ s
0.03 is consistent with experimental observations, for the fast component,

in real polymer blends with large dynamic asymmetry by, respectively, dielectric
spectroscopy [7, 8, 10] and neutron scattering [13], which probe relaxation times of similar
dynamic correlators. Arrhenius behaviour for self-dynamics is also observed for the case
of alkali ions in silica [58] or for water reorientation in polymer matrices [59]. This
common Arrhenius-like behaviour in very different systems suggests a universal feature for
low concentrations of fast molecules in slow host media with interconnected voids.

7. Conclusions

We have presented a computational investigation on the structural relaxation of a simple
bead–spring model for polymer blends with large dynamic asymmetry. We have computed
a large set of dynamic correlators probing relaxation of density fluctuations, Rouse modes, and
reorientation of bond and chain end-to-end vectors. Results have been discussed within the
framework of the mode coupling theory (MCT) for the glass transition. A robust test of MCT
predictions has been achieved through a description of the different analysed correlators with a
common set of dynamic exponents, though for some correlators probing dynamics of the fast
component MCT asymptotic laws are apparently not observed. The observation of Arrhenius-
like behaviour suggests that this breakdown might be associated with strong hopping events
intervening in relaxation of the fast component.

An unusually large value of the exponent parameter λ has been obtained, close to the
upper limit (λ = 1) characteristic of higher-order MCT transitions. According to MCT
predictions, the anomalous relaxation features observed in the present system, as logarithmic
decays or concave-to-convex crossovers in density correlators, might be associated with that
underlying higher-order scenario. An investigation of the case of extreme dilution, where each
individual chain of the fast component is surrounded only by chains of the slow component
(and where an asymptotic dynamic limit is expected [6]), would be computationally expensive.
Still, we expect that a qualitatively similar scenario of anomalous relaxation will be observed.
Since chain connectivity will always guarantee the presence of neighbouring monomers of the
same species for a given monomer of the fast component, coexistence of bulk-like caging and
confinement for the fast component would be present even at extreme dilution, inducing the
higher-order scenario. On the other hand, a progressive increase in the concentration of the
fast component will reduce the timescale separation (i.e. the dynamic asymmetry) between the
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two components, and confinement effects will finally vanish. In that situation the standard
MCT relaxation scenario (as observed for the homopolymer case) will be recovered. The large
collection of results presented here might motivate theoretical work on structural relaxation in
polymer blends with large dynamic asymmetry, and in particular, numerical solutions of the
MCT equations to confirm the suggested higher-order scenario.
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